
Slide 1

Java Security Top 10 - © 2008 SANS

Java Security Top 10

“Two people can work on a problem better than one”
-Whitfield Diffie

Hello my name is Paul Wright and welcome to the “Java Security Top 10”.

Slide 2

Java Security Top 10 - © 2008 SANS

Presentation Plan

• Java Vulnerability Demonstration
• Other examples from Oracle CPU
• 10 most critical Java security
threats in ascending importance

• Synchronising Agile development
and Security process

After the introduction I will demonstrate a current Java vulnerability to you and

discuss some of the examples to be seen on bugtraq recently.

Then we will go through the Java Security Top 10.

I will then discuss how to synchronize Agile development methodology with the

security process.

Then finally I will conclude with questions.

Slide 3

Java Security Top 10 - © 2008 SANS

Introduction
• Business case – 3 banks this year
www.privacyrights.org 224 million

• Developers told Java secure by
default

• This is incorrect as I will show
• TTF vulnerability < 1.5.0_08 JRE
• John Heasman NGS Software.

Introduction

The business case for Java Security can be conveyed by reading the web site

www.privacyrights.org where the many data breaches of national companies are made

public record and the share prices fall accordingly.

This year OmniAmerican Bank, Great Falls financial services and GE money have all

had to publicly admit that they had been the victims of a data breach.

But Java is secure already isn’t it ???

When I was taught Java by a leading IBM instructor at the University of Manchester

we were told that Java was completely secure without any extra effort on behalf of the

developer.

Java may be more secure locally than C++ but it still has many security weaknesses

given its network capabilities.

To show that Java is not secure by default we will demonstrate a current Java

vulnerability being exploited.

Please note that the bug has been fixed in the latest JVMs but anything prior to

1.5.0_08 is vulnerable.

The vulnerability was discovered by John Heasman of NGS Software.

Slide 4

Java Security Top 10 - © 2008 SANS

What you will see in the demo

Malicious Web
Server

Visiting user clicks on URL to
malicious web page

Attacker

Victim

Java Applet is ran in the Victim’s JRE

Applet opens reverse shell
to attacker’s machine using
the TTF vulnerability.

OWNAGE!

1

23

This is how the demo works in basic terms:

Victim browses to a malicious web server via a malicious URL in a phishing email or search engine

entry for example.

Java applet from that web server loads in victims browser and exploits the TTF vulnerability in the

user’s JRE.

Shellcode opens up a reverse shell to the attackers machine via the user’s JRE

This demonstration is coded with all the components in the one VM.

Firstly we have the victim's browser in the bottom left hand corner which is running under the account

named Victim.

Then we have the attackers shell which is running with the account "Attacker".

Lets echo the username to show this.

The attacker leaves a netcat listener open to receive reverse shells from victims that browse to the

MALICIOUS web server.

Now Victim browses to a MALICIOUS WEBSITE.

The Applet exploits their local JVM and connects back to the Attacker's workstation as you can see.

The victim has been owned but they do not know it.

Lessons to learn are that we must update Java JVMs regularly.

Phishing attempts do not require users to interact with the site just visit it.

Egress rules on Vista firewall can be very useful for Windows.

Biggest lesson for us is that Java is not secure by default.

Let's have a look at how the exploit works.

back to powerpoint

Slide 5

Java Security Top 10 - © 2008 SANS

Vulnerable source code

InputStream is =
this.getClass().getResourceAsStream("malformed.txt");

byte[] bFont = new byte[is.available()];
is.read(bFont);
ByteArrayInputStream bais = new

ByteArrayInputStream(bFont);
Font font = Font.createFont(Font.TRUETYPE_FONT, bais);
font = font.deriveFont(32.0f);
Graphics g = this.getGraphics();
g.setFont(font);
textArea.append("[+] Set font, ready to render text\n");
g.drawString("aaaaaaaaaaaaaaaaaa", 20, 20);

The vulnerable code is underlined in the slide. This True type font vulnerability is essentially a problem

of the createFont method not validating input when using TRUETYPE Fonts.

It is read into bFont which is then read into bytearrayinputstream bais.

Then createFont method takes this as input without validating it.

The shellcode then interacts with the OS via the JVM and opens up the reverse shell.

This vulnerability does not have to be exploited through an Applet.

Local Java code could also do the same thing.

The mitigation to this is to upgrade the JRE.

One problem with this is that the old JRE is often left behind and it is possible for Java apps to specifity

the version of the JRE that they need in order to run.

This is because of the incompatibility of certain vintage of application with a certain version of the

JRE.

Therefore completely remove the old JVM.

This demonstration proves that Java is not 100% secure.

But is this a one off or are there other Java security vulnerabilities?

Slide 6

Java Security Top 10 - © 2008 SANS

Bugtraq Java vulnerabilities in March 2008

A search on bugtraq shows 8 java related security vulnerabilities in the month of

March.

There are 8 vulnerabilities reported in the month of March 2 of which are buffer

overflows such as the Java web start tempbuff stack buffer overflow.

Slide 7

Java Security Top 10 - © 2008 SANS

Java vulnerabilities in Oracle

• Vulnerabilities in PL are in underlying Java.
• e.g. DBMS_CDC_IPUBLISH package calls a

Java method called
ChangeTableTrigger which is the actual
source of the SQL Injection vulnerability.

• Therefore vulnerability scanners need to
audit Java in Oracle DB. See attached code
in Paper.

• In Oracle’s 2008 April 15th CPU the highest
criticality vuln (CVSS 9.3) is in Jiniator,
Oracle’s Applet JVM.

Additionally Oracle Security Alerts have shown Java vulnerabilities recently.

SQL injection vulnerabilities in PL packages are often actually in the underlying Java

e.g. Vulnerable DBMS_CDC_IPUBLISH package calls a Java method called ChangeTableTrigger which is the source of

the vulnerability.

Therefore vulnerability scanners need to audit Java in Oracle DB. See attached code in Paper.

In Oracle’s April 15th CPU the highest criticality vuln (CVSS 9.3) is in Jiniator, Oracle’s Applet JVM.

Securing Java is obviously a problem but that’s what we are here to solve. What is needed are security professionals who

understand how to audit Java software.

--This code can be used to statecheck vulnerable Java code in Oracle.

DECLAREV_OBJID NUMBER:=0;

V_HASH NUMBER:=0;

V_BUFFER RAW(32767);

CUR NUMBER;

RES NUMBER;

POS NUMBER;

LEN NUMBER;

BEGIN DBMS_OUTPUT.ENABLE(1000000);

SELECT distinct SYS.OBJ$.OBJ# INTO V_OBJID FROM SYS.OBJ$, SYS.USER$ WHERE

SYS.USER$.USER#=SYS.OBJ$.OWNER# AND SYS.OBJ$.TYPE#=29

AND SYS.USER$.NAME='SYS'

and SYS.OBJ$.NAME='oracle/CDC/ChangeTableTrigger';

CUR:=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(CUR,'SELECT S.PIECE FROM SYS.IDL_UB1$ S WHERE S.OBJ# = :1',DBMS_SQL.NATIVE);

DBMS_SQL.BIND_VARIABLE(CUR, ':1', V_OBJID);

DBMS_SQL.DEFINE_COLUMN_RAW (CUR, 1, V_BUFFER, 32767);

RES := DBMS_SQL.EXECUTE_AND_FETCH (CUR);

IF RES > 0 THENDBMS_SQL.COLUMN_VALUE_RAW(CUR,1,V_BUFFER);

V_HASH:= V_HASH + SYS.DBMS_UTILITY.GET_HASH_VALUE(V_BUFFER,1,1073741824);

DBMS_SQL.CLOSE_CURSOR (CUR);

DBMS_OUTPUT.PUT_LINE(V_HASH);

V_BUFFER:=NULL;

END IF;

END;

/

http://www.oracleforensics.com/wordpress/wpcontent/uploads/2008/03/ukougFINAL.

ppt

This is simplified code from www.nextgenss.com/research/papers/LiveResponse.pdf

by David Litchfield.

Slide 8

Java Security Top 10 - © 2008 SANS

Howto find Java vulnerabilities?
• Dynamic Analysis is during runtime.
• Static Analysis is source code review.
• Manual- grep/findstr and regex
• Free automated source code review tools

e.g. Findbugs
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/bugDescriptions.html
http://checkstyle.sourceforge.net/
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://jcodereview.sourceforge.net/

How to find Java vulnerabilities so that they can be fixed?

The two main methods are dynamic analysis and static analysis.

Dynamic analysis consists of tests run on the code during execution such as fuzzing.

Static analysis is a process of searching the source code for known vulnerable constructs.

This may be done by manually reading the source code or searching using grep/findstr and regex.

So in the case of the TTF vulnerability simply searching the source code for the string “TRUETYPE_FONT” would

provide a type of check.

Grepping for all the variations could be very time consuming so there are automated tools to make this

more time efficient.

Free automated source code review tools such as findbugs can help identify general issues.

http://findbugs.sourceforge.net/

Findbugs publishes it’s vulnerabilities publicly in an easy to read format at this URL.

http://findbugs.sourceforge.net/bugDescriptions.html

Other automated Java code review tools.

http://checkstyle.sourceforge.net/

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

http://jcodereview.sourceforge.net/

Slide 9

Java Security Top 10 - © 2008 SANS

Java Security Code Review

Commercial Security Java code review tools:
• http://www.fortify.com/products/sca/
• http://www.ouncelabs.com/
• http://developer.klocwork.com
Top 10 examples are partly from a Fortify scan

on the current SPRING framework
SPRING is a replacement for NetBeans
http://opensource.fortifysoftware.com/welcome.html

Online tools for searching public code are also available.

For hard core security issues a commercial code review tool such as Fortify’s Source

Code Analyzer is required.

It’s competitors are Ouncelabs and Klocwork.

In order to illustrate some of the issues in our Top 10 we will use the example of

running Fortify SCA against SPRING.

SPRING is a popular set of design patterns used instead of Java Beans with additional

features such as object lifecycle management. http://www.springframework.org/

Slide 10

Java Security Top 10 - © 2008 SANS

How to use Fortify

Audit Tip – Good Book.. Static Analysis by Brian Chess and
Jacob West ISBN 0321424778

To convert the source code to a processable format:
C:\downloads\spring>sourceanalyzer spring-framework-2.5.2

Then to process the intermediate file to a finished results file
that is human readable:

C:\downloads\spring>sourceanalyzer -f springOnItsOwn.fpr
spring-framework-2.5.2

Open the .fpr in Fortifies Audit Bench (GUI for the results).

To convert the source code to a processable format you would issue this command.

C:\downloads\spring>sourceanalyzer spring-framework-2.5.2

Then to process the intermediate file to a finished results file that is human readable

via the Audit Bench application use this command.

C:\downloads\spring>sourceanalyzer -f springOnItsOwn.fpr spring-framework-2.5.2

Then open the .fpr in Fortifies Audit Bench which is a GUI for the results of the scan.

I would recommend Static Analysis book by Brian Chess and Jacob West which includes a

demo of the software.

So what are the security bugs did Fortify find and what other Java security issues

make up the Top10?

Slide 11

Java Security Top 10 - © 2008 SANS

Top 10 Java Security Issues

• Following are the most common
vulnerabilities found in Java Applications

• They are all potentially of high criticality
depending on the context

• Skilled auditor needs to interpret these
findings

• In ascending order of importance
countdown to the most vulnerable.

Following now are the most common vulnerabilities generally found in Java Security Audits.

Potentially they are all of high criticality depending on their context within the application which is

where the skilled auditor is needed to interpret these findings.

These are in increasing order of importance building up to the most insecure aspects of Java code at the

end.

Slide 12

Java Security Top 10 - © 2008 SANS

10. System Information leaks

• printStackTrace will print out memory
and could result in a system information leak.

• This is commonly used as part of a debugging
process.

• Care should be taken to make sure that no
potentially sensitive information is included in
this debugging information.

• Devs should not see passwords/CC (PCI)

out.println("** Root cause is: "+ rootCause.getMessage());

rootCause.printStackTrace(new java.io.PrintWriter(out));

printStackTrace will print out memory and could result in a system information

leak.

This is commonly used as part of a debugging process but care should be taken to

make sure that no potentially sensitive information is included in this debugging

information such as passwords and credit card numbers.

Devs should not see credit card numbers is part of PCI.

At the start of the Java Security audit the status of the code should be agreed i.e. is

this development, staging or production code?

If this is production code then it is a finding as debugging code should not be left in

production code, though it often is.

Slide 13

Java Security Top 10 - © 2008 SANS

9. Java Scope
–Private means can only be seen in the
class.

–Default is Package scope AKA
Friendly i.e. anything in the package.

–Protected is package and subclass.
–Public means any code can see the
members of the class.

Below are the generally accepted definitions of Java scope key words:

Private means can only be seen in the class.

Default is Package scope aka Friendly i.e. anything in the package/directory(folder)

Protected is package and subclass.

Public means anyone can see the members of the class.

Private protected has been deprecated.

Slide 14

Java Security Top 10 - © 2008 SANS

Java Scope misunderstandings
• Private variables can actually be accessed

outside of the application if serializable
unless also declared…? Quiz Question>

• An added inner class makes a private class
downgrade to protected

• Static does not mean that the value of a
variable cannot be changed

• Final means cannot be changed
• Not used enough no const keyword like C.

However many developers do not realize the following additional facts regarding Java Scope:

Private can actually be accessed outside of the class and the whole applicaftion i.e. the private variable

can be dumped to the OS if serializable but not if the variable is also declared transient.

The class needs to implement serializable to dump its variables but declaring the variable as transient

means that the variable cannot be dumped even if the class does implement serializable.

An added inner class makes a private class downgrade to protected in order for the inner class to

access its host.

Static does not mean that the value of a variable cannot be changed, it means that each reference is

pointing to the same value i.e. all instances are the same.

Therefore can change them all in one go (one copy kept in the class of which a reference is replicated

to all the objects instantiated from that class).

A static variable is subject to the Scope key words above (public, private etc).

Good idea to make static variable final as well to stop it from being changed if the value should not be

changed i.e it is a constant.

e.g. public final static double PI = 3.141;

Not like C++ where the keyword const is used.

--

A class defined as final is useful to restrict inheritance if not required.

Also published i.e. external to java bean and local scope i.e. just in the block.

Slide 15

Java Security Top 10 - © 2008 SANS

8.Reverse engineering of source code

• Java decompilers
– Javap –c for string passwords
– Mocha – for source code
– http://jode.sourceforge.net/
– JAD – modern C based version

• Obfuscators
– Klassmaster
– Jshrink
– RetroGuard for Java

Compiled Java byte code can be decompiled back to source code.

Javap –c does a partial job and is included in the Java JDK.

Mocha was the first full decompiler and was written by Mr Van Vliet who decided to keep the source code to his

application closed.

But since Mocha was writtten in Java surely folks could use Mocha on Mocha to find the Java source?

Mr Van Vliet was too clever for this as he had also written the first Java obfuscator which was not released at all in

closed or open source.

One problem. Mr Van Vliet unfortunately died so the source to either Mocha or the obfuscator could not be built

upon by another developer.

Mocha is still available from this URL http://www.brouhaha.com/~eric/software/mocha/

A new tool was written to decompile Java source code called JAD which is a C based replacement and is also

closed source.

I hope it’s Author Pavel Kouznetsov is feeling fit and well ?

The application is available at this URL

Pavel Kouznetsov http://www.kpdus.com/jad.html

There is also Jode from sourceforge but JAD is most commonly used.

Note not all JVMs can be decompiled by JAD e.g. Blackberry’s JVM is not.

There are a number of commercial Java obfuscators now such as Klassmaster, Jshrink and also RetroGuard which

is free for academic use.

Slide 16

Java Security Top 10 - © 2008 SANS

7. Password Management

• javap -c can be used to access the
disassembled byte code to read the password.

• Part of the JDK so no need to upload.

public void testStaticCredentials() throws SQLException {

MockControl dsControl =
MockControl.createControl(DataSource.class);

DataSource ds = (DataSource) dsControl.getMock();

MockControl conControl =
MockControl.createControl(Connection.class);

Connection con = (Connection) conControl.getMock();

ds.getConnection("user", "pw");

Clear text password in source code.

The password should be futher obfuscated or encrypted or preferably stored elsewhere

so that an attacker cannot access it from this point.

javap -c can be used to access the disassembled byte code which will allow an

attacker to read the password and as we have said before it is already on the server so

no need to upload.

Passwords should not be stored in plaintext whilst the drive is at rest, though they

often are.

Slide 17

Java Security Top 10 - © 2008 SANS

6. Session management

• Jetty web server used Java.util.random for
session ids

•Predictable ID, Chris Anley my ex-colleague reported it

•Fixed very quickly and published after
www.ngssoftware.com/research/papers/Randomness.pdf

• Lesson: Never use Java.util.random for crypto

• Always use java.security.SecureRandom

•Search Krugle, googlecode for Software using
Java.util.random

A vulnerability found in Java applications by Chris Anley was within the Jetty

webserver which used java.util.random.

This package creates predictable numbers i.e. not random.

In this case those non-random numbers were used as session identifiers on a web

server called Jetty which meant that when predicted a user’s session could be taken

over by an attacker. Jetty is used by many including the Apache Geronimo project.

Fixed very quickly.

The way to secure against this is to update the Jetty Webserver.

Also never use java.util.random for crypto always user java.security.SecureRandom

This URL has more details.

http://www.securityfocus.com/archive/1/archive/1/459164/100/0/threaded

Slide 18

Java Security Top 10 - © 2008 SANS

5. XSS

• This code is printed out to a web page using input from
the user which means that it maybe vulnerable to XSS.

• A more classic example would be:

if (cookies != null) {
for (int i = 0; i < cookies.length; i++) {
out.println(cookies[i].getName() + "=[" +
cookies[i].getValue() + "]");
}

}

http://www.javanuke.org/user.jsp?op=usrinfo
&unam=<script>alert(document.cookie);
</script>

This code is printed out to a web page using input from the user which means that it is

vulnerable to XSS.

If an attacker could overwrite a user’s cookie then they could get the user to execute

JavaScript of their choosing via the cookie name parameter which is published in the

web page.

A clearer example of XSS is this example

http://www.javanuke.org/user.jsp?op=userinfo&uname=<script>alert(document.c

ookie); </script>

Note that the less than and greater than signs have been replaced by their HTML

equivalents in order to bypass input validation.

Slide 19

Java Security Top 10 - © 2008 SANS

4. SQL Injection

• If the user can control “results” array they
could input SQL into the Dynamic SQL
statement.

• The mitigation is to use a prepared statement.

for (int i = 0; i < results.length; i++) {
// BREAKS ON ' in name

int dbCount = helper.queryForInt("SELECT
COUNT(FORENAME) FROM CUSTMR WHERE FORENAME='" +
results[i] + "'", (Object[]) null);
assertTrue("found in db", dbCount == 1);
}

In this example of SQL injection found in the SPRING Framework, if the user can

control “results” array they could input SQL into the Dynamic SQL statement and run

SQL commands as the application.

A mitigation is to use a prepared statement.

http://www.giac.org/certified_professionals/practicals/gsoc/01.php (page 27 for

prepared statement example).

Slide 20

Java Security Top 10 - © 2008 SANS

3. Buffer Overflows

• Buffer overflows are generally specific to
the version of the JRE

• How to find the version?
• Many JREs on the same box often
java –version and javac –version
echo $PATH $CLASSPATH

or
echo %PATH% %CLASSPATH%

Remember the bugtraq examples at the beginning. 2 buffer overflows in the Java

platform in one month.

Buffer overflows are generally specific to the version of the JRE and not so much a

source code review issue.

Either the JRE is vulnerable or it is not. Part of knowing if Java is secure or not is

updating the platform.

But how to find the effective version of the JRE that you are running especially when

it is common to have multiple JREs on the same machine?

Audit Tip Know which version of Java the system is actually using as follows.

Echo $PATH $CLASSPATH on UNIX or on %PATH% and %CLASSPATH% on

Windows to find the versions that may be used.

Also java –version and javac –version.

Note the versions may differ due to numerous JVMs on the same box.

Slide 21

Java Security Top 10 - © 2008 SANS

2. Directory traversal
• ../../ directory traversal issues are common in Java.
• John Heasman of NGS Software discovered that Java Web

Start allows the local Java security policy to be overwritten
by an applets cookie using ../../../ notation.

• The security privileges of a Java applet are controlled using
a file called java.policy on the client workstation.

• The location of this file is by default %USERPROFILE%\.java.policy
• Once the policy can be overwritten by the cookie all security

within the JVM can be overidden.
• http://www.ngssoftware.com/advisories/high-risk-vulnerability-in-java-web-start/

• One way to deal with this would be to integrity check the
policy files on the workstation.

• There is another, more secure way… Can you guess?

../../ directory traversal issues are common in Java.

The security privileges of a Java applet are controlled using the Java Policy tool

which edits a file called java.policy on the client workstation.

The location of this file is by default %USERPROFILE%\.java.policy

John Heasman of NGSSoftware discovered that Java Web Start allows the Java

security policy to be overwritten by its own cookie using ../../../ notation.

Once the policy can be overwritten all security within the JVM can be overidden.

http://www.ngssoftware.com/advisories/high-risk-vulnerability-in-java-web-start/

One way to deal with this would be to integrity check the policy files on the

workstation.

There is another way…… Can you guess?

Slide 22

Java Security Top 10 - © 2008 SANS

1. Applets
• Don’t use Applets at all.
• Applets are virtually impossible to secure.
• For instance the “same origin” policy that is

applied to applets can be bypassed trivially
using a single keyword.

• Similar to flash vulnerabilities around currently.
• Applets are rarely used now partly due to their

inherent insecurity.

Answer …Don’t use Applets at all.

Applets are virtually impossible to secure.

For instance the “same origin” policy that is applied to applets can be bypassed

trivially using a single word.

Similar to flash vulnerabilities around currently.

Applets are rarely used now partly due to their inherent insecurity.

Slide 23

Java Security Top 10 - © 2008 SANS

Security as part of the
development methodology

• Waterfall is the traditional model
1.Requirements specification
2.Design
3.Construction (implementation or coding)
4.Integration
5.Testing and debugging ?SECURITY GOES HERE.
6.Installation
7.Maintenance

http://en.wikipedia.org/wiki/Waterfall_model

• Generally a long one-hit process
• Straightforward for security

Methodologies

Whilst teaching the Java Security Auditing course many of the students asked how the

methodology of the Audit could fit in with the Software development process.

This is pertinent as the results from the audit will have to feed back into the

development process at some stage.

How does it all fit together?

The classic development methodology is the Waterfall model.

The following phases are followed in Sequential order:

Requirements specification

Design

Construction (AKA implementation or coding)

Integration

Testing and debugging (SO THIS IS WHERE SECURITY GOES).

Installation

Maintenance

http://en.wikipedia.org/wiki/Waterfall_model

Generally a long one-hit process

Straightforward for security

BUT THIS METHODOLOGY IS BEING REPLACE BY AGILE DEVELOPMENT

METHODOLOGIES.

Slide 24

Java Security Top 10 - © 2008 SANS

Modern Agile Development Process

http://en.wikipedia.org/wiki/Agile_software_development

– Continuous fast delivery of software
– Feature driven
– Late changes in requirements are welcomed
– Regular adaptation to changing circumstances
– Projects are built around motivated individuals,

who should be trusted
– Self-organizing teams --- CHANGE

–Agile process more difficult to secure as
continually changing

http://en.wikipedia.org/wiki/Agile_software_development

Continuous fast delivery of software

Feature driven

Late changes in requirements are welcomed

Regular adaptation to changing circumstances

Projects are built around motivated individuals, who should be trusted

Self-organizing teams --- CHANGE

Agile process more difficult to secure as continually changing

Slide 25

Java Security Top 10 - © 2008 SANS

BIG QUESTION?

• How to integrate the security
auditing process with Agile
software development process?

• And watch out for the Agile-Hackers at
GNUCitizen
http://www.gnucitizen.org/blog/agile-hacking/

• A collaborative tool required.
• Fortify manager is an example.

BIG QUESTION?

How to integrate the software development process with the code auditing process?....

Could call the Agile-Hackers at GNUCitizen http://www.gnucitizen.org/blog/agile-hacking/ ?

…In an agile environment a collaborative tool would be required that can scan, report,

correlate and alert over time in synchronization with the software development cycle

i.e. Audit and Development integrated into the same process.

An example of such a tool is Fortify Manager.

Slide 26

Java Security Top 10 - © 2008 SANS

Fortify Manager

The Fortify Manager application sits between the security and the development team

integrating security into the development process.

Testing occurs at the same time as development in short release cycles and can be

automated to carry out regular scanning with correlated results which show how the

code base is being improved over time.

It features:

Web-based user interface which is accessible to all stakeholders and can be integrated

with the software build.

Comparison view of summary metrics and trends across all the projects in a

centralized repository.

Policy Manager for application security PCI etc with flexible alerts which can be

captured on the dashboard as well as via e-mail (plus pager and mobile phone).

Fortify Manager is not in the demonstration version included with the Static Analysis

book by Brian Chess and Jacob West.

Have to buy the Enterprise version of Fortify.

http://www.amazon.com/Programming-Analysis-Addison-Wesley-Software-

Security/dp/0321424778

In addition to Fortify Manager, Fortify Team Server enables lower level developer

collaboration at code level to fix the issues brought up by Fortify SCA.

 Both these products enable security audit and remediation to be carried out alongside

the development process.

Slide 27

Java Security Top 10 - © 2008 SANS

Conclusions

• Java is certainly not secure by default
• Current code bases need to be audited

for security vulnerabilities
• Concurrent security auditing process

should be put in place with dev

• http://www.javasecurity.net
• “Finally” ~ Questions?

Conclusion

Java is certainly not secure by default despite the attitudes of early developers,

therefore current code bases should be audited for security vulnerabilities.

Additionally a concurrent auditing process should be put in place to shadow the

development process so that the security of the application can be measured over time

and compared to other software projects for benchmarking purposes so that best

practice can be adopted across all applications.

